Aegis MCP Server¶
Overview¶
The Aegis MCP server provides custom orchestration, planning, and automation tools specifically designed for autonomous agent operations. It exposes 50+ tools across 24 modules, integrating deeply with Aegis core functionality.
Location: /home/agent/projects/aegis-core/mcp-servers/aegis_mcp/
Tool Prefix: mcp__aegis__
Tool Categories¶
1. Agent Orchestration¶
Tools for spawning, managing, and coordinating autonomous agents.
spawn_agent¶
mcp__aegis__spawn_agent(
task: str,
template: str = "auto", # Or: researcher, executor, developer, etc.
context: dict = {},
token_budget: int = 50000,
model: str = "sonnet"
)
Spawns a specialized agent to execute a task. Template auto-detection based on task description.
Templates Available:
- researcher - Information gathering, web research
- executor - Infrastructure, Docker, deployment
- developer - Code writing, debugging
- reviewer - Code review, quality checks
- communicator - Discord, Telegram, email
- monitor - Health checks, system monitoring
- coordinator - Multi-agent orchestration
- fallback - General-purpose agent
Example:
result = await spawn_agent(
task="Research best practices for FastAPI testing",
template="researcher",
token_budget=30000
)
list_agents¶
Returns all active agents with status, token usage, and current tasks.
get_agent_status¶
Detailed status for a specific agent.
orchestration_dashboard¶
Comprehensive overview: - Fleet summary (agent counts by state) - Template performance metrics - Workflow summaries - Messaging statistics
2. HTN Planning¶
Hierarchical Task Network decomposition for complex goals.
decompose_task¶
mcp__aegis__decompose_task(
goal: str,
description: str = "",
use_memory: bool = True,
use_llm: bool = False
)
Breaks down a complex goal into a hierarchical task tree with dependencies.
Built-in Decomposition Methods:
- deploy - Service deployment workflow
- research - Information gathering pipeline
- implement - Feature implementation
- debug - Problem-solving steps
- create - Content/artifact generation
- integrate - System integration
Returns:
{
"success": true,
"tree_id": "tree-abc123",
"goal": "Deploy nginx service",
"tasks": [
{
"id": "task-1",
"name": "Prepare Docker configuration",
"task_type": "setup",
"agent_role": "executor",
"depends_on": [],
"priority": 1
},
...
],
"visualization": "ASCII tree diagram"
}
Example:
tree = await decompose_task(
goal="Deploy the new API service to production",
description="Node.js API with PostgreSQL backend"
)
execute_task_tree¶
Executes a decomposed task tree with: - Dependency tracking - Parallel execution where possible - Progress monitoring - Episodic memory recording
list_solutions¶
Lists cached planning solutions. Solutions are reused for similar goals.
Solution Cache Stats: - Total solutions: 3+ - Success rate: 100% - Auto-applied when matching goals detected
3. Workflows¶
Graph-based workflow execution with checkpointing and human-in-the-loop gates.
run_workflow¶
Execute or resume a workflow. Supports: - LangGraph-inspired DSL - PostgreSQL-backed checkpointing - InterruptNode for human approval - Conditional branching - Parallel execution
Example Workflows:
- deployment-approval - Deployment with approval gates
- research-synthesis - Iterative research refinement
- tdd-loop - Test-driven development cycle
resume_workflow¶
Resume an interrupted workflow (e.g., after human approval).
list_workflows¶
List stored workflows with status filtering.
4. Error Tracking¶
Three-strike protocol support with knowledge graph integration.
error_record¶
mcp__aegis__error_record(
error_type: str,
context: str,
error_message: str = None,
resolution: str = None,
severity: str = "error", # info, warning, error, critical
strike_count: int = 1
)
Records errors to the knowledge graph for pattern detection.
Categories Auto-Detected: - Import errors - Syntax errors - Runtime errors - Network errors - Database errors - Container errors - Authentication errors - Resource errors - Configuration errors
Example:
await error_record(
error_type="ModuleNotFoundError",
context="Dashboard container startup",
error_message="No module named 'aegis.workflows.storage'",
resolution="Fixed import to use direct db queries",
strike_count=2
)
error_search¶
Find similar past errors and their resolutions.
error_recent¶
mcp__aegis__error_recent(
hours: int = 24,
category: str = None,
severity: str = None,
limit: int = 20
)
Get recent errors for pattern detection.
error_resolution¶
Record how an error was resolved for future learning.
5. Memory & Knowledge¶
journal_entry¶
Append to daily journal (~/memory/journal/YYYY-MM-DD.md).
read_journal¶
Read a journal entry.
6. Beads Task Management¶
Git-backed issue tracker for persistent tasks.
beads_list_ready¶
Get unblocked tasks ready for work.
beads_create¶
mcp__aegis__beads_create(
title: str,
description: str = "",
priority: int = 2,
task_type: str = "task"
)
Create a new task.
beads_update¶
Update task status (backlog, ready, in_progress, blocked, done).
beads_close¶
Close a task with resolution notes.
7. Critic Agent¶
Output validation with multi-dimensional scoring.
critique_output¶
mcp__aegis__critique_output(
output: str,
context: str,
task_type: str = "general",
use_llm: bool = False
)
Validate output quality across 6 dimensions: - Accuracy (30%) - Factual correctness - Completeness (25%) - All requirements met - Safety (25%) - No harmful patterns - Clarity (10%) - Clear communication - Alignment (5%) - Matches intent - Actionability (5%) - Provides next steps
Task Profiles:
- code - Emphasis on accuracy, safety, completeness
- research - Emphasis on accuracy, completeness, clarity
- communication - Emphasis on clarity, alignment, actionability
- deployment - Emphasis on accuracy, safety, completeness
Returns:
{
"approved": true,
"overall_score": 0.85,
"dimensions": {
"accuracy": 0.9,
"completeness": 0.8,
"safety": 1.0,
"clarity": 0.7,
"alignment": 0.9,
"actionability": 0.8
},
"feedback": "Good output. Consider adding more examples.",
"recommendations": ["Add code examples", "Include error handling"]
}
validate_and_improve¶
Iteratively improve output until approval threshold met.
8. System Status¶
system_health¶
Comprehensive health check: - Docker containers - PostgreSQL connection - LLM API status - Resource usage (CPU, memory, disk) - Service health endpoints
get_config¶
Get Aegis configuration values.
9. Research¶
notebooklm_research¶
Query NotebookLM for source-backed research answers.
reddit_research¶
mcp__aegis__reddit_research(
topic: str,
research_type: str = "pain_points" # or: demand, competitors
)
Generate Reddit search queries and parse results for competitive intelligence.
10. File Sharing¶
create_share_link¶
Create time-limited shareable links for files in ~/memory or ~/projects/aegis-core/data.
Returns:
{
"url": "https://aegisagent.ai/share/TOKEN",
"expires_at": "2026-01-26T12:00:00Z",
"token": "abc123...",
"file_path": "/home/agent/memory/semantic/document.md"
}
Viewers:
- Markdown: Syntax-highlighted viewer
- Download: Add ?download=true
- Raw: Add ?raw=true
11. Compliance & Autonomy¶
check_compliance¶
Check compliance status (autonomous mode, financial controls, security boundaries).
autonomous_status¶
Get autonomous mode state.
autonomous_enable/autonomous_disable¶
Control autonomous operation mode.
12. Messaging¶
send_agent_message¶
Inter-agent communication.
broadcast_message¶
Broadcast to multiple agents.
Configuration¶
Startup¶
The Aegis MCP server is started via:
Configured in ~/.claude.json:
{
"mcpServers": {
"aegis": {
"command": "python",
"args": ["-m", "aegis_mcp.server"],
"env": {
"AEGIS_HOME": "/home/agent",
"PYTHONPATH": "/home/agent/projects/aegis-core"
}
}
}
}
Dependencies¶
- Python 3.11+
- mcp[server] package
- Aegis core modules
- PostgreSQL (for workflows, checkpointing)
- FalkorDB (for knowledge graph)
Integration Patterns¶
1. Agent-First Workflow¶
# Decompose complex goal
tree = await decompose_task(
goal="Implement user authentication",
description="OAuth with Google, GitHub, and email"
)
# Execute with specialized agents
result = await execute_task_tree(tree.tree_id)
# Record outcomes
await journal_entry(
content=f"Completed auth implementation: {result.summary}",
section="implementations"
)
2. Error Recovery Pattern¶
try:
# Attempt operation
result = deploy_service()
except Exception as e:
# Record error (Strike 1)
await error_record(
error_type=type(e).__name__,
context="Service deployment",
error_message=str(e),
strike_count=1
)
# Search for similar errors
similar = await error_search(str(e))
# Apply known resolution if found
if similar.related_resolutions:
apply_resolution(similar.related_resolutions[0])
3. Quality Gate Pattern¶
# Generate output
output = await generate_code(requirements)
# Validate before committing
critique = await critique_output(
output=output,
context=requirements,
task_type="code"
)
if not critique.approved:
# Improve iteratively
improved = await validate_and_improve(
output=output,
context=requirements,
max_iterations=2
)
output = improved.output
Performance Considerations¶
Token Usage¶
Aegis MCP tools are designed for efficiency: - Most tools: <500 tokens per call - Dashboard tools: ~1,000 tokens - Planning tools: ~2,000 tokens (tree visualization)
Caching¶
- Solution cache: Reuses decompositions for similar goals
- Template metrics: Cached performance data
- Agent registry: In-memory state
Async Operations¶
All tools use async/await for non-blocking I/O:
# Parallel agent spawning
tasks = [
spawn_agent("Research X", "researcher"),
spawn_agent("Research Y", "researcher"),
spawn_agent("Research Z", "researcher"),
]
results = await asyncio.gather(*tasks)
Troubleshooting¶
Common Issues¶
- "Graphiti client not available"
- Check FalkorDB is running:
docker ps | grep falkordb -
Initialize client:
await GraphitiClient().initialize() -
"Workflow not found"
- Workflows require PostgreSQL
-
Check connection:
await system_health() -
"Agent spawn failed"
- Check token budget not exceeded
- Verify template name is valid
Debug Mode¶
Enable detailed logging:
Next Steps¶
- MCP Overview - Protocol basics
- Docker MCP - Container management
- Graphiti MCP - Knowledge graph operations
- Agent Templates
- HTN Planning
Complete Tool List¶
| Module | Tools | Description |
|---|---|---|
| orchestration | 1 | orchestration_dashboard |
| agents | 4 | spawn_agent, list_agents, get_agent_status, template_metrics |
| planning | 4 | decompose_task, execute_task_tree, list_solutions, get_solution |
| workflows | 4 | run_workflow, resume_workflow, list_workflows, get_workflow_status |
| errors | 4 | error_record, error_search, error_recent, error_resolution |
| journal | 2 | journal_entry, read_journal |
| beads | 5 | beads_list_ready, beads_create, beads_update, beads_close, beads_sync |
| critic | 3 | critique_output, validate_and_improve, get_critic_config |
| system | 2 | system_health, get_config |
| status | 1 | status_dashboard |
| research | 2 | notebooklm_research, reddit_research |
| files | 1 | create_share_link |
| compliance | 1 | check_compliance |
| autonomy | 3 | autonomous_status, autonomous_enable, autonomous_disable |
| messaging | 3 | send_agent_message, broadcast_message, get_pending_messages |
| registry | 2 | list_templates, register_custom_template |
| notebook | 2 | notebook_query, notebook_add_sources |
| news | 1 | get_ai_news |
| ralph | 3 | ralph_enable, ralph_disable, ralph_status |
| memory | 2 | memory_search, memory_store |
| consolidation | 1 | consolidate_knowledge |
Total: 50+ tools across 24 modules