Skip to content

Quick Start Guide

Get oriented with Project Aegis in 5 minutes.

System at a Glance

┌─────────────────────────────────────────────────────────────────────┐
│                         AEGIS PLATFORM                               │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌───────────┐  │
│  │   MEMORY    │  │     LLM     │  │  WORKFLOWS  │  │  TRACING  │  │
│  │  6 Tiers    │  │  4 Tiers    │  │  LangGraph  │  │  Spans    │  │
│  └─────────────┘  └─────────────┘  └─────────────┘  └───────────┘  │
│                                                                     │
│  ┌─────────────────────────────────────────────────────────────┐   │
│  │  Discord │ WhatsApp │ Voice │ Telegram │ Email              │   │
│  └─────────────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────────────┘

Where Things Live

What Where Purpose
Credentials ~/.secure/ API keys, tokens (never commit)
Claude Config ~/.claude/ Settings, history, hooks
Memory ~/memory/ Episodic, semantic, procedural, journal
Source Code ~/projects/aegis-core/ Main Python codebase (78 modules)
Docker Stacks ~/stacks/ Service configurations
Downloads ~/downloads/ Temporary files

Key Capabilities

1. Agent Templates

Template Role Use Case
researcher research Information gathering
executor infrastructure Docker, DNS, deployment
developer code Writing, debugging
reviewer code Quality checks
communicator communication Discord, Telegram, email
monitor monitoring Health checks, alerts

2. Planning Systems

  • HTN Planning: Decompose goals into subtasks with dependencies
  • Tree of Thoughts: Generate multiple solutions, pick the best
  • Graph Workflows: Multi-step workflows with checkpointing

3. Memory & Learning

  • Knowledge Graph: FalkorDB-backed entity extraction
  • Decision Tracking: Record decisions with alternatives
  • Self-Reflection: Post-task analysis for learning
  • Transcript Digester: Ingest Claude sessions into graph

4. Live Products

Product URL Revenue Potential
Intel Dashboard intel.aegisagent.ai $4,568-22,840/mo
Research API aegisagent.ai/api $200-5,000/mo
Open Notebook notebooks.aegisagent.ai $290-5,000/mo

Daily Routine

00:00-06:00 UTC  Maintenance (backups, updates, cleanup)
06:00-08:00 UTC  Morning check (system status, Discord, wallet)
08:00-22:00 UTC  Active work (SHIP > REACTIVE > PROACTIVE)
22:00-24:00 UTC  Evening summary (logs, next-day planning)

Work Priority Philosophy

The Problem: 60-70% of the 144K-line codebase is unused.

The Solution: 1. SHIP & ACTIVATE (70%): Wire existing features, fix bugs 2. REACTIVE WORK (20%): Discord tasks, Beads issues 3. PROACTIVE WORK (10%): Research, documentation

Financial Controls

  • Monthly budget: $50 (Privacy.com virtual card)
  • Auto-approval: <$10 per transaction
  • All purchases logged to ~/memory/ledger.json
  • Spending phases: Days 1-3 ($0), Days 4-10 (<$5), Day 11+ (<$10)

Security Boundaries

  • Credentials stored only in ~/.secure/
  • No SSH access to host system
  • Docker containers for all deployments
  • Never expose API keys in logs or commits
  • Three-strike debug protocol (escalate after 3 failures)

Try It Now

Check System Health

Send a WhatsApp message to +44 7441 443388:

status

View the Dashboard

Open aegisagent.ai in your browser.

Request a Task

Post in Discord #tasks:

Research best practices for API rate limiting

Explore the Knowledge Graph

Visit notebooks.aegisagent.ai and search for topics.

Common Patterns

Pattern 1: Check → Act → Verify (OODA Loop)

# Observe: Gather context
status = await monitor.check_system_health()

# Orient: Analyze against goals
issues = [i for i in status.checks if not i.healthy]

# Decide: Choose action
if issues:
    record_decision(task="Fix health", alternatives=["restart", "investigate"])

# Act: Execute and verify
result = await fix_issues(issues)
update_outcome(decision_id, status="success" if result.ok else "failure")

Pattern 2: Parallel Task Execution

# Launch concurrent research agents
results = await asyncio.gather(
    run_agent("researcher", "Find API patterns"),
    run_agent("researcher", "Search security practices"),
    run_agent("researcher", "Locate test examples"),
)

Pattern 3: Graph Workflow

graph = Graph(
    name="deploy_approval",
    nodes=[
        LLMNode("analyze_risk", prompt="Assess risk: {service}"),
        InterruptNode("human_approval", prompt="Approve?"),
        FunctionNode("execute_deploy", func=deploy_service)
    ],
    edges=[
        Edge("__start__", "analyze_risk"),
        Edge("analyze_risk", "human_approval"),
        CondEdge("human_approval", "execute_deploy", condition=approved),
    ]
)
result = await run_workflow("deploy_approval", {"service": "nginx"})

Philosophy in Action

  1. Enable behaviors, don't ship features - Build what changes user behavior
  2. Chase latent demand - Look for unarticulated needs
  3. Create categories, don't compete - Build something that defines a new space
  4. Aim for 10x, not 10% - Small improvements aren't worth the effort
  5. Ship first, perfect later - 70% shipped beats 100% unshipped

Next Steps


Now that you understand the basics, explore First Commands to start interacting.