Quick Start Guide¶
Get oriented with Project Aegis in 5 minutes.
System at a Glance¶
┌─────────────────────────────────────────────────────────────────────┐
│ AEGIS PLATFORM │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌───────────┐ │
│ │ MEMORY │ │ LLM │ │ WORKFLOWS │ │ TRACING │ │
│ │ 6 Tiers │ │ 4 Tiers │ │ LangGraph │ │ Spans │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ └───────────┘ │
│ │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ Discord │ WhatsApp │ Voice │ Telegram │ Email │ │
│ └─────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
Where Things Live¶
| What | Where | Purpose |
|---|---|---|
| Credentials | ~/.secure/ |
API keys, tokens (never commit) |
| Claude Config | ~/.claude/ |
Settings, history, hooks |
| Memory | ~/memory/ |
Episodic, semantic, procedural, journal |
| Source Code | ~/projects/aegis-core/ |
Main Python codebase (78 modules) |
| Docker Stacks | ~/stacks/ |
Service configurations |
| Downloads | ~/downloads/ |
Temporary files |
Key Capabilities¶
1. Agent Templates¶
| Template | Role | Use Case |
|---|---|---|
| researcher | research | Information gathering |
| executor | infrastructure | Docker, DNS, deployment |
| developer | code | Writing, debugging |
| reviewer | code | Quality checks |
| communicator | communication | Discord, Telegram, email |
| monitor | monitoring | Health checks, alerts |
2. Planning Systems¶
- HTN Planning: Decompose goals into subtasks with dependencies
- Tree of Thoughts: Generate multiple solutions, pick the best
- Graph Workflows: Multi-step workflows with checkpointing
3. Memory & Learning¶
- Knowledge Graph: FalkorDB-backed entity extraction
- Decision Tracking: Record decisions with alternatives
- Self-Reflection: Post-task analysis for learning
- Transcript Digester: Ingest Claude sessions into graph
4. Live Products¶
| Product | URL | Revenue Potential |
|---|---|---|
| Intel Dashboard | intel.aegisagent.ai | $4,568-22,840/mo |
| Research API | aegisagent.ai/api | $200-5,000/mo |
| Open Notebook | notebooks.aegisagent.ai | $290-5,000/mo |
Daily Routine¶
00:00-06:00 UTC Maintenance (backups, updates, cleanup)
06:00-08:00 UTC Morning check (system status, Discord, wallet)
08:00-22:00 UTC Active work (SHIP > REACTIVE > PROACTIVE)
22:00-24:00 UTC Evening summary (logs, next-day planning)
Work Priority Philosophy¶
The Problem: 60-70% of the 144K-line codebase is unused.
The Solution: 1. SHIP & ACTIVATE (70%): Wire existing features, fix bugs 2. REACTIVE WORK (20%): Discord tasks, Beads issues 3. PROACTIVE WORK (10%): Research, documentation
Financial Controls¶
- Monthly budget: $50 (Privacy.com virtual card)
- Auto-approval: <$10 per transaction
- All purchases logged to
~/memory/ledger.json - Spending phases: Days 1-3 ($0), Days 4-10 (<$5), Day 11+ (<$10)
Security Boundaries¶
- Credentials stored only in
~/.secure/ - No SSH access to host system
- Docker containers for all deployments
- Never expose API keys in logs or commits
- Three-strike debug protocol (escalate after 3 failures)
Try It Now¶
Check System Health¶
Send a WhatsApp message to +44 7441 443388:
View the Dashboard¶
Open aegisagent.ai in your browser.
Request a Task¶
Post in Discord #tasks:
Explore the Knowledge Graph¶
Visit notebooks.aegisagent.ai and search for topics.
Common Patterns¶
Pattern 1: Check → Act → Verify (OODA Loop)¶
# Observe: Gather context
status = await monitor.check_system_health()
# Orient: Analyze against goals
issues = [i for i in status.checks if not i.healthy]
# Decide: Choose action
if issues:
record_decision(task="Fix health", alternatives=["restart", "investigate"])
# Act: Execute and verify
result = await fix_issues(issues)
update_outcome(decision_id, status="success" if result.ok else "failure")
Pattern 2: Parallel Task Execution¶
# Launch concurrent research agents
results = await asyncio.gather(
run_agent("researcher", "Find API patterns"),
run_agent("researcher", "Search security practices"),
run_agent("researcher", "Locate test examples"),
)
Pattern 3: Graph Workflow¶
graph = Graph(
name="deploy_approval",
nodes=[
LLMNode("analyze_risk", prompt="Assess risk: {service}"),
InterruptNode("human_approval", prompt="Approve?"),
FunctionNode("execute_deploy", func=deploy_service)
],
edges=[
Edge("__start__", "analyze_risk"),
Edge("analyze_risk", "human_approval"),
CondEdge("human_approval", "execute_deploy", condition=approved),
]
)
result = await run_workflow("deploy_approval", {"service": "nginx"})
Philosophy in Action¶
- Enable behaviors, don't ship features - Build what changes user behavior
- Chase latent demand - Look for unarticulated needs
- Create categories, don't compete - Build something that defines a new space
- Aim for 10x, not 10% - Small improvements aren't worth the effort
- Ship first, perfect later - 70% shipped beats 100% unshipped
Next Steps¶
- First Commands - Learn essential commands
- Architecture Overview - Deep dive into how it works
- Operations Guide - Day-to-day operations
- Products - Revenue-generating products
Now that you understand the basics, explore First Commands to start interacting.